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Abstract. The hydroxyl radical (OH) is the main oxidant in the troposphere and controls the lifetime of 

many atmospheric pollutants including methane. Global annual mean tropospheric OH concentrations ([OH$$$$]) have been 15 

inferred since the late 1970s using the methyl chloroform (MCF) proxy. However, concentrations of MCF are now 

approaching the detection limit, and a replacement proxy is urgently needed. Previous inversions of GOSAT satellite 

measurements of methane in the shortwave infrared (SWIR) have shown success in quantifying [OH$$$$] independently of 

methane emissions, and observing system simulations have suggested that thermal infrared (TIR) measurements may 

provide additional constraints on OH. Here we combine TIR satellite observations of methane from AIRS with SWIR 20 

observations from GOSAT in a three-year (2013-2015) analytical Bayesian inversion optimizing both methane emissions 

and OH concentrations. We examine how much information can be achieved on the interannual, seasonal, and latitudinal 

features of the OH distribution using information from MCF data as well as the ACCMIP ensemble of global atmospheric 

chemistry models to construct a full prior error covariance matrix for OH concentrations for use in the inversion. This is 

essential to avoid overfit to observations. Our results show that GOSAT alone is sufficient to quantify [OH$$$$]  and its 25 

interannual variability independently of methane emissions, and that AIRS adds little information. The ability to constrain 

the latitudinal variability of OH is limited by strong error correlations. There is no information on OH at mid-latitudes, but 

there is some information on the NH/SH interhemispheric ratio, showing this ratio to be lower than currently simulated in 

models. There is also some information on the seasonal variation of OH concentrations, though it mainly confirms that 

simulated by models. Future satellite observations of methane will continue to improve our understanding of methane 30 

emissions and consequently [OH$$$$] and its interannual variability.  
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1 Introduction 

The hydroxyl radical (OH) is the main oxidant in the troposphere. It determines the lifetimes of most atmospheric species 

removed by oxidation such as methane (a major greenhouse gas), non-methane volatile organic compounds (NMVOCs, 35 

important for air quality), and hydrogenated halocarbons (contributing to stratospheric ozone loss). The global OH 

concentration and its trend have been monitored indirectly since the 1980s by measuring the concentration of 

methylchloroform (MCF), an industrial solvent removed from the atmosphere by reaction with OH (Bousquet et al., 2005; 

Krol et al., 1998; Lovelock, 1977; Patra et al., 2020; Prinn et al., 1987). MCF was banned in the 1990s because of its 

contribution to stratospheric ozone depletion, and its concentration is now approaching the detection limit where it loses its 40 

value as a proxy for OH (Liang et al., 2017). An observation system simulation experiment (OSSE) previously suggested 

that a combination of thermal infrared (TIR) and shortwave infrared (SWIR) satellite observations of atmospheric methane 

could provide a continued proxy for global OH going forward (Zhang et al., 2018). Here we evaluate this idea with a joint 

inversion of AIRS and GOSAT satellite measurements for 2013-2015, examining the capability of the observations to 

quantify global OH concentrations as well as interannual, seasonal, and latitudinal variations.  45 

 

The OH concentration is controlled by complex photochemistry (Lelieveld et al., 2016; Levy, 1971; Logan et al., 1981). The 

primary source is UV-B photolysis of ozone in the presence of water vapor. The main sinks are reactions with carbon 

monoxide (CO), methane, and NMVOCs, resulting in a lifetime ~1 second, and producing peroxy radicals that can be 

recycled to OH by reaction with nitric oxide (NO). The global mean tropospheric OH concentration is commonly expressed 50 

as the lifetime of methane against oxidation by tropospheric OH, 𝜏!"#$" . From the methylchloroform proxy one infers the 

tropospheric lifetime of OH 𝜏!"#$" = 10.2%&.()&.* years for 2000 (Prinn et al., 2005). Current atmospheric chemistry models find 

a methane lifetime of 8.4 ± 0.3 years, implying that OH in the models is too high (Stevenson et al., 2020).  

 

Although models are generally consistent in their simulations of global mean OH concentrations, there are large 55 

disagreements in the regional distributions of OH concentrations driven by NOx and NMVOC distributions (Naik et al., 

2013; Zhao et al., 2020), chemical mechanisms (Murray et al., 2021), clouds (Liu et al., 2006; Voulgarakis et al., 2009), and 

other meteorological variables (He et al., 2021). Models consistently simulate higher OH in the Northern Hemisphere (NH) 

than the Southern Hemisphere (SH) (Naik et al., 2013; Stevenson et al., 2020). MCF observations, by contrast, suggest no 

interhemispheric gradient (Patra et al., 2014), or slightly higher OH in the SH (Montzka et al., 2000). Models may have 60 

excessive OH in the northern hemisphere because of underestimated CO (Naik et al., 2013).  

 

Understanding year-to-year variability and decadal-scale trends in OH concentrations is important for attributing the cause of 

methane fluctuations (Turner et al., 2017), including the recent acceleration of the methane trend (Laughner et al., 2021; Qu 

et al., 2022; Stevenson et al., 2022). Methane is emitted from a range of poorly quantified sources including wetlands, 65 
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livestock, waste, fuel exploitation, rice paddies, and open fires (Saunois et al., 2020). These sources could be responsible for 

methane interannual variability and trends but so could OH concentrations (Turner et al., 2017). The El Nino Southern 

Oscillation (ENSO) drives interannual variability in model OH due to its influence on lightning (Anderson et al., 2021; 

Murray et al., 2013; Turner et al., 2018), water vapor (Anderson et al., 2021; Turner et al., 2018), and CO emitted from 

biomass burning (Zhao et al., 2020). Models and measurements show a 5% range of interannual variability of OH over the 70 

last 30 years though with no temporal correlation between the two (Szopa et al., 2021). Models find increasing OH from 

1980 to present driven by increases in anthropogenic NOx emissions (Gaubert et al., 2017; Naik et al., 2013; Stevenson et al., 

2020; Zhao et al., 2019). By contrast, MCF observations indicate OH increasing from 1980 to 2005 but then flat or 

decreasing after 2005 (Nicely et al., 2018; Rigby et al., 2017; Stevenson et al., 2020; Turner et al., 2017).  

 75 

Many studies have used satellite observations of methane to infer methane emissions using specified OH concentrations to 

optimize methane sources (Turner et al., 2015), while others have attempted to optimize both methane sources and OH 

concentrations by exploiting differences in spatial/seasonal impacts on methane concentrations (Maasakkers et al., 2016; 

Zhang et al., 2021) or by including in the inversion complementary information from observations of MCF (Cressot et al., 

2014; Cressot et al., 2016) or formaldehyde and CO (Yin et al., 2021). Inversions of GOSAT (SWIR) satellite observations 80 

of methane alone can constrain global mean OH about as well as MCF and infer a flat interhemispheric gradient, although 

posterior errors may be too optimistic (Lu et al., 2021; Maasakkers et al., 2019; Zhang et al., 2021). Zhang et al., (2018) 

proposed that TIR satellite observations of methane, which have sensitivity to the free troposphere and broader coverage 

over oceans and at night, may reduce error correlation between OH and methane emissions.   

 85 

Satellite-based observations of methane in the TIR have been made continuously since 2002 by several instruments: AIRS 

(2002-present), TES (2004-2011), IASI (2007-present), CrIS (2011-present), and GOSAT-2 (2018-present) (Jacob et al., 

2016). TIR observations have received little attention in inverse studies because they are not sensitive to methane near the 

surface (Wecht et al., 2012). Direct applications of TIR satellite observations have mostly focused on processes affecting the 

free troposphere, such as detecting stratospheric intrusions (Xiong et al., 2013), methane emissions from large wildfires 90 

(Ribeiro et al., 2018; Xiong et al., 2010), interannual variations in mid-troposphere methane in response to ENSO (Corbett et 

al., 2017), seasonal fluctuations of methane in response to fossil fuel and rice paddy emissions in China (X. Zhang et al., 

2011), and differences of seasonality compared to surface observations (Zhou et al., 2023). The combination of SWIR and 

TIR observations has been used to develop lower troposphere methane products including with  GOSAT+AIRS (Worden et 

al., 2015), GOSAT+IASI (Schneider et al., 2022), and GOSAT-2 (Kuze et al., 2022; Suto, 2022).  95 

 

Here we combine TIR observations from AIRS with SWIR observations from GOSAT in a three-year 2013-2015 inversion 

optimizing both methane emissions and OH concentrations. We use an analytical solution that provides formal 

characterization of posterior error statistics (including error correlations) and information content as part of the inversion. 
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We place particular focus on the ability of the inversion to quantify global mean OH concentrations, interannual variability, 100 

and latitudinal and seasonal variations. This involves careful characterization of prior error covariances using OH 

concentrations from the ACCMIP model ensemble (Naik et al., 2013).   

2 Data and Methods 

We use 3 years (2013-2015) of satellite observations from GOSAT and AIRS (Sect. 2.1), to optimize a state vector of OH 

distributions and annual methane emissions. The observations are assembled in an observation vector y with total dimension 105 

𝑚 . The state vector x comprises 𝑛  elements describing annual gridded non-wetland methane emissions, monthly 

subcontinental wetland methane emissions, and mean OH concentrations for individual years in different latitudinal bands 

and seasons (Sect. 2.2). Optimization is done by Bayesian inference using a prior estimate xA for the state vector and error 

covariances for that prior estimate (SA) and for the observations (SO) (Sect. 2.3), together with the GEOS-Chem chemical 

transport model y = F(x) expressing the sensitivity of the observations to the state vector (Sect. 2.4). We use an analytical 110 

solution for minimization of the Bayesian cost function J(x) to yield the optimal value (posterior estimate) 𝒙/ of the state 

vector, the posterior error covariance matrix 𝑺1, and metrics of information content (Sect. 2.5). The subsections below 

describe these different elements of the inversion except for the prior error covariance matrix of OH concentrations, which 

will be presented in a dedicated Sect. 3. Throughout this paper, we refer to “OH concentrations” or [OH] for a given domain 

as the mass-weighted average OH number density for that domain, and the global annual mean OH concentrations as [OH$$$$]. 115 

2.1 Satellite data 

GOSAT (Greenhouse gases Observing SATellite), launched in 2009, detects methane by solar backscatter in the SWIR using 

the TANSO-FTS (Thermal And Near infrared Sensor for carbon Observation ‐ Fourier Transform Spectrometer) instrument. 

In its default operating mode, GOSAT provides 10.5 km-diameter nadir observations of radiance separated by about 250 km 

along-track and cross-track on a sun-synchronous orbit with an equatorial overpass at about 1300 local solar time (LST). We 120 

use the University of Leicester CO2-proxy methane retrieval v9.0 (Parker and Boesch, 2020), which uses the GOSAT 

observations in the 1.65 μm band to retrieve methane as a column-averaged dry air mixing ratio XCH4 with a vertical 

sensitivity profile (column averaging kernel) of near-unity in the troposphere.  

 

AIRS (Atmospheric Infrared Sounder), launched in 2002, detects methane by observing TIR radiation emitted by the Earth. 125 

AIRS provides 15 km-diameter nadir observations across a 1250 km swath with equatorial overpasses at about 0130 and 

1330 LST, resulting in global coverage twice per day. We use the optimal estimation MUSES-AIRS retrieval of methane in 

the 8 and 12 μm bands, which provides 26-level profiles of dry-air methane mixing ratio (Kulawik et al., 2021). The AIRS 

instrument has less than two degrees of freedom for signal per measurement and little sensitivity to the lower troposphere. 

We therefore convert the vertical profiles to a column-averaged dry air mixing ratio XCH4 above 600 hPa, with column 130 
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averaging kernels featuring maximum sensitivity to the upper troposphere. See Worden et al., (2015) for typical GOSAT and 

AIRS column averaging kernels.   

 

For both AIRS and GOSAT, we remove measurements flagged for low quality, negative values, and surface pressures 

differing by more than 50 hPa from the local GEOS-Chem surface pressure which would indicate unresolved topography. 135 

We do not use GOSAT sunglint measurements because of their sparsity and seasonal sampling bias (Maasakkers et al., 

2019). We also exclude measurements poleward of 60° due to model stratospheric bias in interpreting methane column 

observations in the polar vortex (Stanevich et al., 2020; Turner et al., 2015; Zhang et al., 2021). We include both daytime 

and nighttime measurements for AIRS, as we find no significant biases between them. This results in 600,000 successful 

retrievals for GOSAT and 2.5 million for AIRS.  140 

 

In order to compare satellite retrievals to the GEOS-Chem simulations, we produce a model column sampled in the same 

manner as the satellite data. For each AIRS and GOSAT observation, we select the coincident GEOS-Chem grid cell and 

interpolate the GEOS-Chem methane mixing ratio profile, which is on 47 vertical levels, to the AIRS profile (26 vertical 

levels) and the GOSAT profile (20 vertical levels) using a mass-conserving interpolation algorithm described in Keppens et 145 

al. (2019) with Python code available on GitHub at https://github.com/pennelise/GOOPy (Penn and Nesser, 2024). We call 

these interpolated profiles 𝒄+. We then translate these profiles to column-averaged dry air mixing ratios using the column 

averaging kernel 𝒂. The column averaging kernel is based on mixing ratio and does not include different pressure weights 

for each level (Boesch et al., 2011), so we apply the pressure weighting function (𝒉) provided in the GOSAT and AIRS data 

products. For an individual satellite XCH4 observation y, we derive the corresponding model value ym using:  150 

 

𝑦+ = 𝒉,((𝑰 − 𝒂),𝒄- + 𝒂,𝒄+)		 (1) 

 

where I is the unit vector and 𝒄- is the prior profile provided by the GOSAT and AIRS products, which come from the 

MACC-II methane inversion and TOMCAT stratospheric chemistry model for GOSAT and from the MOZART atmospheric 

chemistry model for AIRS. 155 

 

Figure 1 shows satellite observations from 2013 for GOSAT and AIRS compared to a 2013 GEOS-Chem simulation driven 

by GOSAT-optimized emissions from Lu et al. (2021). As expected, GOSAT is globally unbiased relative to this GEOS-

Chem simulation (-2 ± 12 ppb), but AIRS is biased low (-19 ppb ± 24 ppb), and so we apply a correction of +19 ppb to the 

AIRS data to ensure consistency with GOSAT.  160 
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Figure 1: GOSAT and AIRS observations of annual mean methane dry column mixing ratio (XCH4) in 2013, binned by 4°x5° grid 
cells. GOSAT sunglint and observations poleward of 60° are not included. The bottom panels compare these observations with a 
GEOS-Chem simulation driven by 2013 posterior emissions from an inversion of GOSAT observations (Lu et al., 2021). A +19 ppb 
global bias correction is applied to AIRS on the basis of this comparison. Means and standard deviations of the differences 165 
between the satellite observations and GEOS-Chem are given inset. 

 

2.2 State vector and prior estimates 

We optimize a state vector including annual gridded non-wetland emissions, monthly subcontinental wetland emissions, and 

OH distributions. Non-wetland emissions consist of 1009 4°x5° grid cells over land for each year (1009x3 = 3027 elements). 170 

Wetland emissions are optimized for each month and in 14 subcontinental regions following Bloom et al. (2017) (12x14x3 = 

504 elements). OH concentrations are optimized for each season and year in four latitude bands of 30° each from 60°S to 

60°N (4x4x3 = 48 elements). This results in n = 3579 total state vector elements.  

 

We define 𝑲 = 𝜕𝒚/𝜕𝒙 as the 𝑚× 𝑛 Jacobian matrix describing the dependence of satellite observations on the state vector 175 

as simulated by GEOS-Chem. We calculate the Jacobian by perturbing each element of the state vector by 50% (for 

emissions) and 20% (for [OH]), resulting in 𝑛 + 1 = 3580 forward model runs. The forward model is strictly linear in the 
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relationship of concentrations to emissions, and the assumption of linearity is also acceptable for the relationship to OH 

concentrations in a 3-year simulation. Thus K fully defines GEOS-Chem for the purpose of the inversion.  

 180 

The state vector elements are optimized in the inversion as scaling factors relative to prior estimates. We use the same prior 

estimates as Lu et al. (2021). Default prior anthropogenic emissions are from the EDGAR inventory v4.3.2 (Crippa et al., 

2018) and are superseded for the US by the gridded EPA inventory of Maasakkers et al. (2016) and globally for oil, gas, and 

coal by the GFEI inventory of Scarpelli et al. (2020). Prior anthropogenic emissions are assumed constant except for manure 

and rice for which we apply seasonal scaling factors (Maasakkers et al., 2016; Zhang et al., 2016). Prior wetland emissions 185 

are from WetCHARTS v1.0 with 0.5ox0.5o spatial resolution and monthly temporal resolution, and including the partitioning 

into 14 subcontinental regions for use in inversions (Bloom et al., 2017). Additional prior emissions include the GFED 

inventory for fires at daily resolution (Randerson et al., 2017), and geologic sources from Etiope et al. (2019) scaled to the 

global total from Hmiel et al. (2020). Prior tropospheric OH concentrations (Figure 2) are archived monthly mean values 

from an older (version 5) GEOS-Chem simulation on the 4ox5o grid (Wecht et al., 2014). The mass-weighted annual mean 190 

tropospheric OH concentration is	[OH$$$$] = 11.2	 ×	10. molec. cm-3 consistent with the MCF-derived estimate from 2000 of 

[OH$$$$] = 10.8%&./.)&.(( × 10. molec. cm-3 (Prinn et al., 2005). More recent versions of GEOS-Chem overestimate [OH$$$$] (Shah et 

al., 2023), consistent with the current generation of models (Stevenson et al., 2020).  

 

 195 
Figure 2. Mass-weighted tropospheric OH concentrations in GEOS-Chem used as prior estimates for the inversions. Monthly 
mean values for January and July are shown.  

 

2.3 Error estimates 

 The inversion requires specification of both observing system and prior error covariance matrices. The observing 200 

system error includes contributions from the measurement and from the forward model. We use the residual error method 

described in Heald et al. (2004) to derive it. We first split the observations into monthly 4°x5° grid cell subsets and compare 

observations within each subset to the GEOS-Chem simulation F(x) using prior values. We then assume that the model bias 
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(𝑏 = 𝑭(𝒙𝑨) − 𝒚$$$$$$$$$$$$$) within each subset is due to error on the prior estimates, and that the residual represents the observing 

system error. We find in this manner mean observing system error standard deviations of 12 ppb for GOSAT and 22 ppb for 205 

AIRS, mostly contributed by the retrieval error with reported error standard deviations averaging 10 ppb for GOSAT and 16 

ppb for AIRS. Our observing system error standard deviation for GOSAT is consistent with previous estimates (e.g. Lu et 

al., 2021; Qu et al., 2021; Zhang et al., 2021). We construct the observing system error covariance matrix assuming no error 

correlation between individual observations (diagonal matrix). 

 210 

Prior error standard deviations for non-wetland emissions are assumed to be 50% of emissions for each 4ox5o grid cell with 

no error covariance between grid cells. For wetland emissions, we calculate the full prior error covariance matrix between all 

14 regions and 36 months from the WetCHARTs model ensemble following Bloom et al. (2017), and then shrink the off-

diagonal terms following Schäfer and Strimmer (2005) to ensure that the matrix is positive definite. Prior error estimates for 

the OH elements of the state vector are derived in Section 3.  215 

2.4 Forward Model 

We use the GEOS-Chem version 12.7.1 CH4 simulation (DOI: 10.5281/zenodo.3676008) on a 4°x5° grid with 47 vertical 

layers as forward model for the inversion. Atmospheric transport is driven by the Modern-Era Retrospective Analysis, 

version 2 (MERRA-2) assimilated meteorological fields for 2013-2015 from the NASA Global Modeling and Assimilation 

Office. In addition to the tropospheric OH fields optimized in the inversion (Section 2.2), minor methane sinks in GEOS-220 

Chem include stratospheric loss prescribed with 2-D oxidant fields (Murray et al., 2013), oxidation by tropospheric Cl 

following Wang et al. (2019), and soil uptake from the MeMo inventory (Murguia-Flores et al., 2018). Initial conditions for 

January 1, 2013 come from the GOSAT-optimized posterior simulation of Lu et al. (2021) and are globally unbiased with 

respect to GOSAT and adjusted AIRS observations as described in Section 2.1.  

2.5 Inversion 225 

We perform three inversions: “GOSAT-only” optimized with GOSAT observations, “AIRS-only” optimized with AIRS 

observations, and “GOSAT+AIRS” optimized with both. The equations below are for the inversion using both GOSAT and 

AIRS observations. Because we assume no error correlations between the instruments, an inversion with only one instrument 

can be derived by removing all terms pertaining to the other instrument.  

 230 

We minimize a Bayesian cost function that accounts for the distance from the prior estimate (𝒙1 ) and the satellite 

observations (𝒚), weighted by the inverse of the prior (𝑺1) and observing system (𝑺$ ) error covariance matrices, and 

including an additional regularization factor (γ). Observing system components from GOSAT and AIRS are denoted by 

subscripts. Assuming normal errors, and further assuming no correlation between GOSAT and AIRS errors, the cost function 

is given by:  235 
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𝑱(𝒙) = (𝒙 − 𝒙1),𝑺1%2(𝒙 − 𝒙1) 

+γ34567(𝒚8$91, −𝑲8$91,𝒙),	𝑺$,8$91,%2 (𝒚8$91, −𝑲8$91,𝒙) 

+γ6;<5(𝒚1=>9 −𝑲1=>9𝒙),	𝑺$,1=>9%2 (𝒚1=>9 −𝑲1=>9𝒙) 

 

 

(2) 

  

We can then solve min(J(x)) analytically by setting 𝜕𝐽 𝜕𝑥	 = 0⁄  and obtain the posterior solution 𝒙/ (Rodgers, 2000):  

 

𝒙/ = 𝒙1 + 𝑮8$91,(𝒚8$91, −𝑲8$91,𝒙1) + 𝑮1=>9(𝒚1=>9 −𝑲1=>9𝒙1) 

 

(3) 

where 𝒙/ is the posterior estimate for the state vector and 𝑮1=>9 and 𝑮8$91, are the gain matrices:  

  240 

𝑮1=>9 = 𝑺1𝑲1=>9, L𝑲1=>9𝑺1𝑲1=>9, +
𝑺$,1=>9
γ6;<5

M
%2

 

𝑮8$91, = 𝑺1𝑲8$91,
, L𝑲8$91,𝑺1𝑲8$91,

, +
𝑺$,8$91,
γ34567

M
%2

 

 

(4) 

 

The analytical solution also yields a closed-form expression for the posterior error covariance matrix 𝑺1 characterizing the 

normal error on 𝒙/ : 

 

𝑺1 = Nγ34567𝑲8$91,
, 𝑺$,8$91,%2 𝑲8$91, + γ6;<5𝑲1=>9

, 𝑺$,1=>9%2 𝑲1=>9 + 𝑺1%2O
%2

 (5) 

 245 

We can also derive the averaging kernel matrix 𝜕𝒙//𝜕𝒙 that describes the sensitivity of the posterior estimate to the true state:  

 

𝑨 = 𝑰𝒏 − 𝑺1𝑺1%2  (6) 

 

The trace of the averaging kernel gives us the Degrees of Freedom for Signal (DOFS), which describes the number of pieces 

of independent information derived from the inversion.  250 

 

For some of our applications we will aggregate state vector elements into a reduced state vector xred using a summation 

matrix W: 
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𝒙/𝒓𝒆𝒅 = 𝑾𝒙/ (7) 

 255 

and derive the corresponding averaging kernel (𝑨𝒓𝒆𝒅) and posterior error covariance (𝑺1𝒓𝒆𝒅) for the aggregated solution:  

 

𝑨𝒓𝒆𝒅 = 𝑾𝑨𝑾∗ (8) 

 

𝑺1𝒓𝒆𝒅 = 𝑾𝑺1𝑾𝑻 (9) 

 

where 𝑾∗ is the Moore-Penrose pseudoinverse of 𝑾. 260 

 

The regularization factor γ is intended to avoid overfitting to observations caused by not accounting for error covariance in 

the observing system (matrix SO) We determine the appropriate value for γ using the technique described in Lu et al. (2021). 

The sum of prior terms in  the posterior value of the cost function, 𝑱𝑨(𝒙/) = (𝒙/ − 𝒙1),𝑺1%2(𝒙/ − 𝒙1), should follow a chi-

square distribution with expected value 𝑱𝑨(𝒙/) = 𝑛 , and we adjust γ  to achieve this. We determine γ34567  and γ6;<5 265 

separately using GOSAT-only and AIRS-only inversions. We find in this manner γ34567 = 0.2 and γ6;<5 = 0.1. To provide 

equal weight to [OH] and methane emissions in the cost function, we follow Maasakkers et al. (2019) and scale the OH prior 

error covariance matrix 𝑺𝑨,𝑶𝑯 by the ratio of the number of emission state vector elements to OH state vector elements, or 

3531/48, before inserting them into the full prior error matrix 𝑺𝑨.   
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3 Construction of prior error covariance matrix for OH concentrations 270 

GOSAT observations of methane have been used in inversions to infer the global mean tropospheric OH concentration, its 

interannual variability, and its interhemispheric difference (Maasakkers et al., 2019; Qu et al., 2021, 2024; Zhang et al., 

2021). Here we explore how much information satellite observations can actually provide on OH concentrations by 

including in the state vector the OH concentrations in individual years (2013-2015), four latitudinal bands, and four seasons, 

for a total of 48 state vector elements (Section 2.2) for which we can diagnose posterior error correlations and information 275 

content. This requires accounting for prior error correlations between these different elements, as represented in a 48×48 

matrix SA,OH. 

 

We construct the prior error covariance matrix for OH in the following manner. First, we specify the error statistics for 

global annual mean mass-weighted tropospheric OH concentrations,	[OH$$$$]. This includes a systematic error of 10% within 280 

the MCF constraint (Prinn et al., 2005) and an interannual variability error that we estimate to be 5% on the basis of 

interannual variability of model and MCF-derived [OH$$$$] reported by Holmes et al. (2013). Thus the prior error covariance 

matrix for [OH$$$$] in our three simulation years (2013-2015), in unit of fractional error variances and covariances, is given by a 

3×3 matrix 𝑺𝑨,𝑶𝑯$$$$$$$ = (𝜎GHI): 

 285 

𝑺𝑨,𝑶𝑯$$$$$$$ = Z
0.05I + 0.1I 0.1I 0.1I

0.1I 0.05I + 0.1I 0.1I
0.1I 0.1I 0.05I + 0.1I

[ (10) 

 

 

Prior error correlations between OH concentrations in different latitudinal bands and seasons should account for our current 

knowledge of the OH distribution. We use for this purpose monthly mean output for one year from the ensemble of 11 

independent ACCMIP global atmospheric chemistry models reported in Naik et al. (2013). All ACCMIP models include the 290 

same anthropogenic emissions of NOx, CO, and NMVOCs. They have different natural emissions, chemical mechanisms, 

and meteorology. Global distributions of OH concentrations in each ACCMIP model were presented previously in Zhang et 

al. (2018). For each ACCMIP model, we calculate the mass-weighted integral of OH concentrations vertically up to 200 hPa 

for each 30° latitude band for each season. We then compute the variances and covariances between each latitude band and 

season across the ensemble of ACCMIP models. The resulting 16x16 covariance matrix for the ACCMIP models 𝑺𝑨,𝑨𝑴	is 295 

taken as the error covariance matrix in the spatial-seasonal distribution of OH for the inversion, with error standard 

deviations represented by a diagonal matrix 𝑫.  

 

Figure 3 shows the spatial and seasonal error correlation matrix 𝑹𝑨,𝑨𝑴 and the error standard deviations D calculated directly 

from the ACCMIP ensemble, such that 𝑺𝑨,𝑨𝑴 = 𝑫𝑹𝑨,𝑨𝑴𝑫. We find strong error correlations in the tropics for all seasons, 300 
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indicating a commonality of effects driving [OH] differences between models. Error correlations are also strong between 

mid-latitudes summer and the tropics, likely for the same reasons. Mid-latitude OH concentrations in other seasons show 

much weaker error correlations, implying that they are driven by different photochemistry and emissions as might be 

expected. Northern and southern midlatitudes are highly correlated in their respective winters.  

 305 

 
 
Figure 3: Error correlations for model OH concentrations in different latitude bands and seasons (denoted 𝑹𝑨,𝑨𝑴 in the text). 
Pearson’s error correlation coefficients are calculated for the ensemble of 11 different ACCMIP models. The mean and standard 
deviation of the ACCMIP ensemble for each latitude and season is inset above.  310 
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We replicate the 16×16 spatial-seasonal OH error covariance matrix SA,AM constructed from the ACCMIP data to create a 

48×48 error covariance matrix for the three years of our analysis, resulting in the block matrix:  

 

^
𝑺𝑨,𝑨𝑴 𝑺𝑨,𝑨𝑴 𝑺𝑨,𝑨𝑴
𝑺𝑨,𝑨𝑴 𝑺𝑨,𝑨𝑴 𝑺𝑨,𝑨𝑴
𝑺𝑨,𝑨𝑴 𝑺𝑨,𝑨𝑴 𝑺𝑨,𝑨𝑴

_ 
 

(11) 

 315 

This matrix is low rank because it was constructed with information from only 11 models to estimate 48 state vector 

elements. We use the method of Schäfer and Strimmer (2005) to shrink the off-diagonal errors and produce a matrix that is 

positive definite and invertible. Schäfer and Strimmer (2005) show that their method produces a more accurate estimate of 

the true error covariance matrix (where accuracy is defined by comparison of the true and estimated eigenvalues). After off-

diagonal shrinkage, matrices along the diagonal of the block matrix differ from those off-diagonal. We refer to the resulting 320 

16x16 covariance matrices of spatial-seasonal errors within years as 𝑺𝑨,𝑨𝑴′′, and between years as 𝑺𝑨,𝑨𝑴′.  Additionally, we 

refer to the error variances of the global mean [OH$$$$] for one year inferred from these matrices as 𝜎1KI ′′	and 𝜎1KI ′.  

 

We can then construct 𝑺𝑨,𝑶𝑯 from the regularized ACCMIP covariance matrices 𝑺𝑨,𝑨𝑴′′ and 𝑺𝑨,𝑨𝑴′ scaled by the annual 

mean error variances inferred from the MCF observations 𝜎GHI  (Eq. (10)) and the spatial-seasonal error variances inferred 325 

from the ACCMIP model 𝜎1KI ′′	and 𝜎1KI ′. We can formulate 𝑺𝑨,𝑶𝑯 as a block matrix, where each block is an appropriately 

scaled ACCMIP covariance matrix for one year, as shown:  

 

𝑺𝑨,𝑶𝑯 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝜎

I
22

𝜎1KI ′′	
𝑺𝑨,𝑨𝑴′′

𝜎I2I
𝜎1KI ′

𝑺𝑨,𝑨𝑴′
𝜎I2L
𝜎1KI ′

𝑺𝑨,𝑨𝑴′

𝜎II2
𝜎1KI ′

𝑺𝑨,𝑨𝑴′
𝜎III
𝜎1KI ′′	

𝑺𝑨,𝑨𝑴′′
𝜎IIL
𝜎1KI ′

𝑺𝑨,𝑨𝑴′

𝜎IL2
𝜎1KI ′

𝑺𝑨,𝑨𝑴′
𝜎ILI
𝜎1KI ′

𝑺𝑨,𝑨𝑴′
𝜎ILL
𝜎1KI ′′	

𝑺𝑨,𝑨𝑴′′⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (12) 

 

This enforces error variances and covariances for annual global mean OH concentrations identical to the values 𝜎GHI  from Eq. 330 

(10). 

 

We refer to Eq. (12) as the full-correlations error covariance matrix. We will also test the effect of simpler OH correlation 

assumptions on inversion results, while keeping the state vector the same. First is a no-correlations error covariance matrix 

that assumes diagonal errors for the OH concentration, with no error correlation between years, seasons, or latitude bands. 335 

Second is a correlated years error covariance matrix that includes error correlations between years but with no spatial-
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seasonal structure. We scale the correlated-years error covariance matrix such that the error (co)variances for [OH$$$$] are 

identical to 𝑺𝑨,𝑶𝑯$$$$$$$ in Eq. (10). We cannot do the same for the no-correlations error covariance matrix because it is diagonal; 

however we scale it such that the error variance of the three-year average is identical to that represented by 𝑺𝑨,𝑶𝑯$$$$$$$. The 

variance of the three-year average is therefore identical for all three error covariance matrices.  340 

4 Results & discussion 

4.1 Quantifying emissions 

 
Figure 4. Difference between the global mean dry column mixing ratio (XCH4) simulated by GEOS-Chem and observed by GOSAT 
(left) and AIRS (right). Monthly mean results are shown for the 2013-2015 inversion period. The GEOS-Chem simulation is driven 345 
by either prior or posterior values for emissions and OH concentrations. Posterior values are from inversions using either GOSAT 
or AIRS observations or both. The 19 ppb correction applied to AIRS observations is to remove the bias with GOSAT (Sect 2.1).  

 

Figure 4 compares the global mean dry column mixing ratio (XCH4) simulated by GEOS-Chem and observed by GOSAT and 

AIRS. The prior simulation shows an increasing negative bias with time because of an incorrect balance between methane 350 

sources and sinks. All inversions (posterior solutions) are successful in correcting this bias, including its seasonality.  
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Figure 5. Optimized global distributions of 2013-2015 non-wetland methane emissions using GOSAT, AIRS, and GOSAT+AIRS 
observations. Prior emissions are shown in (a). The average posterior/prior ratios from 2013-2015 for inversions with each set of 
observations are shown in (b)-(d). Total emissions are inset in (a)-(d) with their error standard deviations. Averaging kernel 355 
sensitivities (diagonal elements of the averaging kernel matrix) averaged over 2013-2015 are shown in (e)-(g). The averaging kernel 
sensitivities represent the ability of the inversion to constrain the posterior solution independently from the prior estimate (1= 
fully, 0 = not at all). The degrees of freedom for signal (DOFS) for the 1009 4°x5° grid cells averaged over 3 years are inset.  

 

The inversions optimize both methane emissions and OH concentrations. Figure 5 shows the prior non-wetland emissions 360 

and 2013-2015 posterior/prior correction factors for all three inversions, as well as the averaging kernel sensitivities. The 

GOSAT-only inversion (Figure 5b) shows upward corrections to the southern United States, Brazil, and East Africa, and 
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downward corrections to East Asia and parts of Russia, consistent with Zhang et al. (2021) who used similar prior estimates. 

The AIRS-only inversion shows generally similar results but weaker averaging kernel sensitivities. Results from the AIRS-

only inversion are consistent with those of the GOSAT-only inversion with the exception of strong upward corrections over 365 

Brazil, Argentina, and India, which together cause much higher global methane emissions in the AIRS-only solution than the 

two solutions constrained by GOSAT observations. The greater power of the GOSAT data to constrain emissions on the 

4°x5° grid is measured by the DOFS (144 for GOSAT, 33 for AIRS). Adding AIRS observations to GOSAT increases the 

DOFS by only 4% as the information on emissions from these two sensors overlaps.  

 370 

We find small (<10 Tg a-1) changes from year to year for methane emissions in all solutions, and most of these changes are 

attributed to non-wetland emissions. This is consistent with the solutions in Yin et al. (2021) who find global methane 

emissions changes over 2013-2015 on the order of 1-2%.  

 

 375 
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Figure 6. Monthly mean 2013-2015 wetland emissions for the 14 WetCHARTs subcontinental regions as defined by Bloom et al. 
(2017). Prior emission estimates from the mean of the WetCHARTs inventory ensemble are compared to posterior emissions from 
the GOSAT, AIRS, and GOSAT+AIRS inversions. The degrees of freedom (DOFS) for signal aggregated to 14 regions x 12 
months = 168 state vector elements are also given.  380 

 

Figure 6 shows inversion results for the seasonality of wetland emissions in the 14 subcontinental regions of the 

WetCHARTs inventory used as prior estimate. The seasonality and magnitude of the GOSAT and GOSAT+AIRS posterior 

estimates are consistent with Zhang et al. (2021), who used a similar wetland state vector but with more years of GOSAT 

data. Our posterior produces negative emissions in Boreal North America in the spring, which are also seen in the solution of 385 

Zhang et al. (2021). They attribute these negative emissions to potential soil sinks in the region. Remarkably, the AIRS-only 

inversion shows the same feature. Remarkably, the posterior global sum of non-wetland and wetland emissions in the 

GOSAT and GOSAT+AIRS inversions is lower than the prior estimate, even though the prior simulation is biased low 

(Figure 4). This is because of a compensating decrease in [OH$$$$], as analyzed below. 
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4.2 Quantifying global mean OH concentrations independently of emissions 390 

We now turn our attention to the ability of the satellite observations to constrain the global annual mean OH concentration, 

[OH$$$$], independently of emissions and for individual years. Let E denote the global annual mean methane emission rate. The 

annual rate of change in atmospheric methane mass, Δm/Δt, is given by 

 
Δ𝑚
Δ𝑡 = 𝐸 − 𝑘[𝑂𝐻$$$$]𝑚 − 𝐿 (13) 

 395 

where k is the rate constant for oxidation of methane by tropospheric OH with a suitable temperature kernel (Prather and 

Spivakovsky, 1990) and L is the sum of other minor sinks with 𝐿 ≪ 𝑘[OH$$$$]𝑚.  Considering that Δm/Δt is set by the 

observations used in the inversion, and L is minor and not optimized, we see that corrections to E and [OH$$$$] are necessarily 

correlated. In order to constrain [OH$$$$] we need independent information on emissions. The lower-atmosphere gradients over 

land observed by GOSAT can provide that information, as pointed out by Zhang et al. (2021) and shown in Section 4.1, but 400 

the AIRS TIR measurements cannot and this is reflected in the low DOFS of Figures 5 and 6. We focus therefore on the 

GOSAT and GOSAT+AIRS observing configurations to evaluate their capability to constrain [OH$$$$] in individual years 

separately from emissions.  

 

Figure 7 shows the corrections to E and [OH$$$$] for individual years from the inversions. The inversions apply a systematic 405 

correction to [OH$$$$] in all three years, reflecting bias in the prior [OH], and a smaller interannual variability. The right panels 

show the rows of the reduced averaging kernel matrix summing emissions globally (Eq. (8)) and diagnosing the ability of the 

inversion to correct separately [OH$$$$] and E in individual years. We find that the averaging kernels for [OH$$$$] in individual 

years are strongly peaked, with no significant aliasing from emissions and only minor aliasing with [OH$$$$] for other years. We 

conclude that [OH$$$$] can be optimized for individual years and independently of emissions. Some aliasing of the inverse 410 

solution to [OH$$$$] across years is to be expected in view of the long lifetime of methane but we are still able to capture 

individual years and  thus interannual variability of [OH$$$$]. GOSAT+AIRS provides only slightly more information than 

GOSAT alone. A similar averaging kernel analysis by (Maasakkers et al., 2019) for 2010-2015 GOSAT observations found 

that the observations could constrain the average [OH$$$$] over all years but not the interannual variability. In that study the 

emission trend was imposed to be linear, which would strongly detract from the ability to independently constrain 415 

interannual variability of [OH$$$$].   
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Figure 7. Ability of inversions using GOSAT and GOSAT+AIRS methane observations to quantify global annual mean 
tropospheric [𝐎𝐇%%%%%] for individual years and independently from emissions. (a) 2013-2015 percentage corrections to the [𝐎𝐇%%%%%] prior 420 
estimate. Prior and posterior error standard deviations are shown as error bars. DOFS are shown inset (DOFS = 3 would imply 
perfect separate quantification of [𝐎𝐇%%%%%] in individual years). (b) Rows of the reduced averaging kernel matrix describing the ability 
of the observing system to separately quantify emissions (E) and [𝐎𝐇%%%%%] for the individual years. A perfect observing system would 
have an averaging kernel sensitivity of 1 for the reduced state vector element of interest (perfect characterization) and 0 for other 
elements (no sensitivity of the solution to other elements).  425 

 

4.3 Resolving spatial and seasonal patterns in OH concentrations 

We now investigate the ability of the methane observations to constrain the spatial and seasonal variations of OH 

concentrations. Figure 8 shows the corrections to OH concentrations from the inversion as a function of latitude, along with 

the corresponding rows of the averaging kernel matrix. We find that GOSAT and GOSAT+AIRS provide only weak 430 

constraints on the OH latitudinal distribution because prior errors from the ACCMIP ensemble are highly correlated (Figure 

3). We are unable to resolve the midlatitudes, where averaging kernel rows show higher sensitivity to the adjacent tropical 

latitude band, and almost no sensitivity to the midlatitudes themselves. There is some information on the interhemispheric 

ratio of OH concentrations, with the inversion decreasing the NH/SH ratio from 1.11±0.08 in the prior estimate to 1.01±0.02 

(for GOSAT) and 1.04±0.01 (for GOSAT+AIRS). This is consistent with previous inversions of methane observations 435 

showing downward corrections in the NH/SH ratio (Zhang et al., 2021) and independent evidence from MCF observations 

that current model NH/SH ratios are too high (Naik et al., 2013; Patra et al., 2014). Nevertheless, we see from the averaging 

kernels that there is significant aliasing of the information between the northern and southern tropics, because errors are 
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highly correlated across models (Figure 3). It could be that the ensemble of ACCMIP models exaggerates the error 

correlation on account of using the same anthropogenic emissions, but OH in the tropics is more sensitive to lightning, fires, 440 

and clouds which vary across the models.  

 

The seasonal cycle for [OH] is shown in Figure 9. We find from the averaging kernel matrix that the inversion provides 

significant information on the seasonality of [OH] in the two hemispheres, despite the smearing across latitudinal bands 

found in Figure 8. There is some aliasing between adjacent seasons but winter and summer are well separated, mainly for the 445 

tropics since there is little information from mid-latitudes (Figure 8). The GOSAT+AIRS inversion increases the amplitude 

of the seasonal cycle in both hemispheres. The posterior seasonal patterns from the GOSAT and GOSAT+AIRS inversions 

do not differ significantly from the prior, which demonstrates a good understanding of the OH seasonality on the 

hemispheric scale.  

  450 
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Figure 8. Ability of inversions of GOSAT and GOSAT+AIRS methane observations to resolve the latitudinal 
variability of OH concentrations. (a) Latitudinal distribution of mass-weighted tropospheric [OH] in the prior 
estimate (prior error standard deviation in shading) and in the posterior estimates. The NH/SH interhemispheric 
ratio and its error standard deviation are inset. (b) Rows of the reduced averaging kernel matrix describing the 
ability of the observing system to separately quantify [OH] in different latitudinal bands. A perfect observing system 455 
would have an averaging kernel sensitivity of 1 for the reduced state vector element of interest (perfect 
characterization) and 0 for other elements (no error correlation).  
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 460 

 

 
Figure 9.  Same as Figure 8 but for the seasonality of OH concentrations in each hemisphere.   
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We have found that the ability of the inversion to optimize spatial and temporal features of the OH distribution is limited by 

prior error correlations from the independent knowledge expressed by the ACCMIP models. We examined the effect of these 

prior error correlations in sensitivity simulations for GOSAT-only inversions in which we either assumed no error 

correlations between OH state vector elements, or error correlations only for the interannual variability of [OH$$$$] as described 465 

by Eq. (10). Aggregated errors on [OH$$$$] were scaled to be the same in all inversions as described in Sect. 3. Fig. 10 shows the 

results for the GOSAT-only inversion. Constraints on [OH$$$$] are similar across all inversions, as would be expected since our 

base full-correlations inversion can effectively constrain that quantity for individual years. The inversions without error 

correlations show larger perturbations to the latitudinal distribution of [OH], with higher values at mid-latitudes and lower in 

the tropics, and a greater shift to the southern hemisphere. The spatial error correlations imposed by the ACCMIP models 470 

(Figure 3) suppress these changes in the base inversion. To the extent that the ACCMIP ensemble fairly represents error 

correlations on the OH distribution, ignoring that prior information results in overfit to observations. The seasonality in each 

hemisphere is better constrained by the observing system because there is more contrast between summer and winter, with 

northern and southern tropics being opposite in seasonal phase. However, we find that ignoring seasonal error correlations in 

the no-correlation and correlated-years inversions results in opposite corrections to OH concentrations in spring and summer 475 

of the northern hemisphere which are in fact highly correlated in the ACCMIP models (Figure 3).  
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Figure 10. Sensitivity of [OH] inversion results to the prior error correlations imposed for interannual, seasonal, and latitudinal 480 
variability. Results are shown for the 2013-2015 GOSAT-only inversion, for our base inversion with full error correlations from 
the ACCMIP ensemble (same results as in Figures 7-9) and for inversions with no [OH] error correlations or with [OH] error 
correlations for individual years only.  Panels show (a) annual mean [𝐎𝐇%%%%%]  for individual years, (b) 2013-2015 latitudinal 
distribution, and (c, d) 2013-2015 seasonal variations for the northern and southern hemispheres.  Prior error standard deviations 
are shown as vertical bars and shading. The correlated-years and no-correlation inversions show the same latitudinal and seasonal 485 
variations of [OH].   
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5 Conclusions 490 

We examined the ability of satellite observations of atmospheric methane to quantify different features of the tropospheric 

OH distribution including global multi-year mean, interannual variability in the global mean, interhemispheric ratio, intra-

hemispheric latitudinal variation, and seasonality. The work was motivated by the need to find a replacement proxy for 

tropospheric OH as methylcholoroform (MCF) concentrations fall below detectable levels, and to explore how much 

information can be extracted from the satellite observations. 495 

 

We used for this purpose a 3-year (2013-2015) analytical inversion of GOSAT (SWIR) and AIRS (TIR) satellite 

observations. SWIR observations have near-unit sensitivity for the whole atmospheric column but are limited to daytime and 

(mainly) land. TIR observations are sensitive mainly to the middle/upper troposphere but include nighttime and oceans.  

 500 

Several previous inversions investigated the ability of satellite observations of methane to quantify the OH distribution but 

did not properly account for prior error correlations in that distribution. Here we provide detailed accounting of this error 

correlation including for global mean OH and interannual variability using MCF, and for spatial and seasonal variations 

using the ACCMIP ensemble of 11 global atmospheric chemistry models. We find strong prior error correlations between 

latitude bands and seasons.  505 

 

Optimizing OH concentrations from satellite observations of methane requires independent information on emissions and the 

SWIR observations are essential for that purpose. We find that a GOSAT-only inversion can effectively constrain global 

mean OH and its interannual variability independently of emissions, thus providing information comparable to MCF. Adding 

AIRS observations to the inversion does not significantly improve the constraint. 510 

 

The ability of the inversion to resolve the latitudinal variability of OH is very limited because of strong error correlation 

across latitudes in the ACCMIP ensemble. Not accounting for this error correlation would result in overfit to observations. 

There is in particular no information on OH at mid-latitudes. The inversion provides some information on the 

interhemispheric OH ratio, and this is important for interpreting the corresponding gradient in methane observations (East et 515 

al., 2024). There is also some information on seasonality of OH concentrations, and the inversion confirms the prior 

seasonality from the ACCMIP models.  

 

TROPOMI observations starting in May 2018 provide much denser SWIR data for methane than GOSAT (Lorente et al., 

2021), allowing finer-grained quantification of emissions, but for coarse global-scale inversions as presented here the 520 

GOSAT observations offer similar information content as TROPOMI (Qu et al., 2021) and are of higher quality (Balasus et 

al., 2023). Beyond GOSAT and TROPOMI, the constellation of satellite observations of methane is rapidly expanding 
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(Jacob et al., 2022), providing an effective vehicle to monitor tropospheric OH and its interannual variability in the future. 

This will be important for interpreting future methane trends and for improving our understanding of the factors controlling 

tropospheric OH. Improving the ability of the inversions to constrain the spatial variability of OH will require partnership 525 

with atmospheric chemistry models to resolve error correlations, possibly through observations of other trace gases such as 

CO. 

6 Data Availability 

The GOSAT methane retrievals version 9.0 are available at https://dx.doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb 

(Parker and Boesch, 2020). The AIRS methane retrievals are available at 530 

https://disc.gsfc.nasa.gov/datasets/TRPSDL2CH4AIRSFS_1/summary (Kulawik et al., 2021). Oil, gas, and coal emissions 

from the GFEIv1.0 inventory are available at 

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/HH4EUM&version=1.0 (Scarpelli et al., 2020). 

Methane emissions from EDGAR v4.3.2  are available at https://edgar.jrc.ec.europa.eu/dataset_ghg432 (Crippa et al., 2018). 

Wetland emissions from WetCHARTs v1.0 are available at https://doi.org/10.3334/ORNLDAAC/1502 (Bloom et al., 2017). 535 

The OH fields from the ACCMIP ensemble of models is available at 

https://catalogue.ceda.ac.uk/uuid/ded523bf23d59910e5d73f1703a2d540 (Shindell et al., 2011).  
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